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Abstract—CNN-based stereo matching methods achieve great
performance but come with high computational requirements.
Pruning a CNN can reduce the complexity but may in turn
lead to memory conflicts, lowering throughput. Our proposed
architecture and memory mapping technique aim at reducing
conflicts to exploit extremely sparse stereo matching networks. To
maintain a high utilization of processing elements, we decompose
the de-convolution operation into several convolution operations.
The proposed architecture provides a 2.1× speed up over
SCNN. Compared to the software implementation, only 0.01%
performance drop is observed, so that the proposed architecture
obtains state-of-the-art accuracy compared to existing sparsity
aware hardware implementations.

Index Terms—sparsity-aware CNN, PE utilization, deconvolu-
tion, VLSI architecture, Memory mapping

I. INTRODUCTION

Deep learning based methods have lead to a significant

progress in stereo matching and come with much more com-

plexity than hand-crafted stereo methods. Real-time stereo

engines are crucial for many computer vision applications

such as automatic driving, robotic and augmented reality (AR).

However, existing AI engines are not able to deliver enough

throughput to achieve real time processing for advanced stereo

networks. One way to reduce complexity of CNNs is to prune

weights. Although several sparsity aware architectures have

been proposed to leverage the complexity reduction, they fail

to preserve PE utilization under high sparsity.

Typical stereo matching networks first extract features and

downscale them using strided convolutions. Unlike classifi-

cation networks, whose features contract in the spatial di-

mension, extracted features are up-scaled by a deconvolution

operation to regain the desired spatial extend. Although state-

of-the-art stereo matching networks [3] have a remarkable

accuracy, the computational complexity is two orders greater

than what CNN accelerators targeting classification networks

can provide.

To lower the complexity, we use [27] to compact the

model and prune the weights to 95% sparsity with only 1.6%

accuracy drop. Although the complexity can be reduced by

92%, the current most advanced sparse accelerator [22] can’t

efficiently exploit the sparsity because of frequent memory

accesses. In addition, the deconvolution operation in the later

layers yields an irregular, hardware-unfriendly computation

pattern.

Since extremely sparse networks introduce memory con-

flicts that lower PE utilization, we design a memory hierarchy

to reduce these conflicts to a level that is practical for a

hardware implementation. To further improve the hardware ef-

ficiency, the fractional convolution operation (de-convolution)

is transformed into multiple regular convolutions.

The contribution of this work is threefold:

1) A memory conflict reduction and speed up architecture

for extremely sparse stereo matching networks

2) The sparsity-aware architecture supports strided convo-

lution and de-convolution

3) Compared to state-of-the-art sparse aware architecture,

the proposed architecture achieves more than 2 times

speed up for various degrees of sparsity.

II. RELATED WORKS

Existing CNN-based hardware implementations mostly tar-

get on classification networks [14], [16], [19], [24], [26].

The optimization for CNN accelerators can be divided into

three categories including optimization for computation [11],

memory [5], [8], [9], and a data reuse scheme [2], [6], [7], [15],

[23]. All above works focus on dense neural networks and

cannot support stereo matching network with high complexity.

A pruning technique is widely adopted to provide weight

sparsity and further lower computational complexity for neural

networks.

The pruning technique for stereo networks [13] is proposed

to lower computational complexity with acceptable accuracy

loss. Several works [1], [4], [7], [12], [20], [22], [25], [28]

target on pruned models are proposed to deal with sparse and

irregular computation pattern. Among them, SCNN [22] is the

first architecture using Cartesian product to fully exploit both

activation and weight sparsity. None of these works can pro-

vide enough throughput for stereo matching network because

of high complexity and special operations. Although ASV [10]

can achieve 30 fps with an interpolation technique for DNN

method, it can’t support high complexity networks that is

more accurate. Our work can provide 10.36 fps by exploiting

extremely sparse weight and achieve the best accuracy among

those hardware implementations.

III. PROPOSED ARCHITECTURE

The proposed architecture is a block-based chess memory

mapping to efficiently support unit-stride, stride-2, and de-
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convolution operations.

A. Memory Conflict of Sparse Neural Network Engines
Reducing memory conflicts is crucial for designing ac-

celerators targeting sparse neural networks because of the

irregular dataflow when zero values are skipped. SCNN [22],

our baseline architecture, uses the Cartesian product as their

inner data flow. In each cycle, F filters and I inputs are

loaded from buffer and fed to F×I multipliers to compute a

Cartesian product. Then, the partial-sums computed from the

multipliers are delivered to the accumulation unit according

to the coordinates computed from the input’s and filter’s

indices in the coordinate computation unit. That’s because the

multiplier outputs should be added to the corresponding partial

sum in the output activation space. However, coordinates of

outputs in the same cycle may be mapped to the same bank but

a different address, which would result in a memory conflict.

In addition, because a full read and store operation requires

two cycles with single port memory, conflicts may also happen

in adjacent cycles as shown in Fig. 1. If a memory conflict

occurs, the accelerator with no additional buffer stalls until

all data has been stored, which lowers efficiency. Although

SCNN set number of accumulator bank A to be larger than

F×I to reduce bank contention, tile sizes should be limited

to 6×6 for best performance, which is so small that induces

high percentage of halos. Hence, we propose a new memory

mapping approach to reduce conflicts.

Fig. 1: An example of memory conflict

B. Memory Hierarchy Design for Convolution
We divide a layer’s activations into a four layers: whole

activation, tile, block and group. The whole activation is di-

vided into tiles because the total workload for stereo matching

network cannot be stored on-chip within acceptable memory

size. Notice that the tile size is an important design parameter

to be explored because it affects the halo ratio (additional

computation at the tile overlap). Next, a tile is divided into

several blocks to reduce memory conflict. Each block is split

into four groups following a checker board pattern to support

strides of 2 efficiently, which are commonly used in stereo

NNs.
Fig. 2 shows an example of mapping a 16 × 4-tile to 16

banks. Given 50% input sparsity, eight inputs are on average

(a) SCNN mapping(linear mapping)

(b) Block mapping

Fig. 2: An example of mapping 16× 4 - tile to 16 banks with

(a) the linear mapping and (b) the block-based mapping. Input

and corresponding output ranges are marked in blue and red

dashed boxes, respectively. A conflict happens while outputs

are mapped to the same number with different colors.

required to obtain four non-zero inputs in a cycle. SCNN

processes input in linear order and employs linear mapping

(Fig. 2 (a)), which maps input and output data in a linear

pattern. Inputs in a tile are compressed together and directly

mapped to input banks linearly. For the output, the index of

the accumulation bank is

(Wtile · y + x) mod Nbanks. (1)

Linear mapping may cause lots of conflicts because outputs

in the same cycle have a high possibility to map to the same

bank at different addresses as shown in Fig. 2. The origin

of this is the mismatch of the 1-d linear mapping and the 2-d

convolution kernel. In contrast, block mapping processes input

in linear order within a block and maps input and output in

several 4 × 4 blocks (Fig. 2 (b)), which can map outputs that

span in 2 dimensions in different blocks. On the other hand,

block mapping can make greater distance between the same

number. Hence, memory conflict can be reduced. However, the

block mapping cannot support 2-strided convolution which is

frequently used in stereo NN to reduce resolution. Hence, we

propose a memory mapping approach based on block mapping.

Convolutions with stride 2 are frequently used in stereo neu-

ral network for down-sampling. Conventional SCNN cannot

support this operation, because it needs a special dataflow.

If convolution with stride 2 is directly applied on SCNN,

three quarters of the output are useless because a unit-strided

convolution is operated and produces a full output that is

4 times larger than the intended down-sampled output. We

design a new memory mapping approach to exploit the stride-

2 computation pattern and eliminate the useless operations. As

shown in Fig. 3(a), every color of weights is only multiplied

with the same color of activations. We can divide activation

and weight in checker board pattern into 4 groups and per-

form a group-to-group operation instead of an all-to-all one

as shown in Fig. 3(b). Hence, no excess computations are

performed with chess mapping and group-to-group operation.
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(a) Stride 2 convolution (b) Operation

Fig. 3: The proposed chess memory mapping technique.

We apply modifications to the dataflow for both convo-

lution configuration to enhance PE utilization. For stride 2

convolution processed in weight stationary order with chess

mapping, we first fetch 4 groups of weights into registers

and feed a group of 4 non-zero inputs in a cycle. Then,

the weights in the same group as the activations are directed

to multipliers. Hence, only products that contribute to final

outputs are performed (Fig. 3). In addition, we change the

group of activations every other cycle and keep the 4 weights

in different groups in the buffer to reduce memory conflicts

and reuse weights. Notice that memory conflicts can be

reduced because adjacent groups of activations are likely to be

located in the same window so that output will be directed to

the same location. For unit-strided convolutions, conflicts may

increase with chess mapping because the output range spans a

larger area if 4 non zero inputs in the same group are fetched

(Fig. 4). However, we observe that diagonal groups can be

merged because if we process two merged groups alternately

in adjacent cycles with any fixed group, output may map to

same group in same cycle and different group in adjacent

cycle. Hence, we can get the same range of outputs with block

mapping by merging diagonal groups, which can have a higher

PE utilization than SCNN’s mapping. In addition, we can also

reduce adjacent cycle conflict. The final mapping of ofmap is

shown in Fig. 5.

C. De-convolution architecture design

Deconvolution is a common component in stereo NN,

which contributes 38.2% percent of total convolution [10]. The

standard process starts with ifmap upsampling by zeropadding

followed by a convolution. The ifmaps that have been up-

sampled are not efficient on a general accelerator but suitable

for sparse computation. As shown in [10], a kernel can be

divided into 4 sub-kernels, which is same as our 4 groups

in chess mapping. The property that output may contribute

to 4 independent subset of output space can reduce memory

conflict. By staggering same groups of weights in different

cycle, PE utilization can be enhanced. The overall dataflow is

shown in Fig. 6.

D. The proposed architecture

The overall architecture is based on SCNN [22]. To reduce

conflict, a conflict unit is added in every accumulation bank

in a PE as presented in Fig. 7(a). The conflict unit (Fig. 7(b))

3 0 1 2 3 0 1 2 3 0

7 4 5 6 7 4 5 6 7 4

11 8 9 10 11 8 9 10 11 8

15 12 13 14 15 12 13 14 15 12

Input
Output

A B A

C D C

A B A

3 0 1 2 3 0 1 2 3 0

7 4 5 6 7 4 5 6 7 4

11 8 9 10 11 8 9 10 11 8

15 12 13 14 15 12 13 14 15 12

Input Output

A B A

C D C

A B A

Direct mapping

Modified mapping

Fig. 4: Modified chess mapping on unit-strided convolution.

Different groups of inputs are marked in different colors. For

direct mapping, inputs are divided into 4 groups. For modified

mapping, inputs are divided into 2 groups. i.e. green groups

is merged into red group and yellow group is merge into blue

group.

Fig. 5: Block-based chess mapping: all data is labeled into 4

groups. Every 8× 4 block is mapped to 32 banks.

Fig. 6: Data flow for all operation

consists of a conflict detection unit and a conflict buffer. The

address of F × I products are compared and clustered in

the conflict detection unit. Clustered data is then stored in

the conflict buffer to be stored in accumulator bank in the

successive cycles. There are 32 Accumulate (Acc.) banks in

the proposed architecture as same as SCNN [22].

IV. EXPERIMENTAL RESULTS

We implement our design in TSMC’s 40 nm technology. We

test these architectures with KITTI 2015 validation set [21]

and the error refers to the 3-pixel error. Effects of each

techniques on frame rate are listed in Table I. As the results
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Fig. 7: (a)The proposed PE architecture which the conflict

controlling unit is shown in the top right corner and (b) the

detailed conflict detection unit.

indicate, applying chess mapping on 2-strided convolution and

deconvolution has 1.23× speed up on overall performance

with only one quarter of layers. The complete proposed

architecture achieves a 2.1× speedup.

We compare our result with systolic array based accel-

erator [18] (“-Acc” suffix), ASV [10] and SCNN [22]. All

accelerator are configured to 1024 multipliers and run in 400

MHz. As shown in Fig. 8, our architecture has an average of 2x

speed up over SCNN across different degree of sparsity. Notice

that exploiting sparsity can have better potential of speed up

and outperform dense accelerator with 95% sparsity.

TABLE I: Operation ablation study

Conv Strided Conv Deconvolution FPS Speed up

4.94 1.00

� 8.39 1.70

� � 9.62 1.95

� � � 10.36 2.10

The specification of the proposed architecture in comparison

with SCNN is listed in Table II. The proposed architecture can

have higher throughput than SCNN [22] since SCNN suffers

from the memory conflict in convolution, strided convolution

and deconvolution.

In this work, we try to map the data flow in an efficient pro-

cessing pattern that can fully utilize the computing resources.

Although we find that bandwidth is also an important factor of

overall performance, which is idealized in our work, there are

some work that target on reducing bandwidth [17] which can

Fig. 8: Relations between frame rates and error rates.

TABLE II: Hardware implementations comparison.

SCNN
SCNN

(Implemented)
Proposed

Task Classification Stereo Stereo

Technology
TSMC

16 nm

TSMC

40 nm

TSMC

40 nm

Frequency (MHz) 1000 400 400

MAC 1024 1024 1024

Input Size 224× 224 960× 540 960× 540

Frame rate (fps) N/A 4.94 10.36

Supported

operation

convolution

(s=1)

convolution

(s=1)

convolution
(s=1,2)

deconvolution
3-px error

(kitti2015)
N/A 3.85 3.85

On-chip Mem. (kB) 1000 1393 1161

be incorporated with our work. An interpolation technique is

proposed by ASV [10] to speedup the computation, which

is able to cooperate with our architecture. The proposed

architecture achieves 17 % SRAM reduction by replacing input

stationary with weight stationary. Noted that the size of Acc.

banks is excluded in SCNN [22], which is included in our

re-implemented version.

V. CONCLUSION

An architecture that can support large weight sparsity is

proposed. The memory conflict slow down the speed of sparse

neural network accelerator. In this paper, we proposed a chess

mapping in accordance with the kernel’s shape to reduce

memory conflict. Furthermore, the architecture can process

stride-2 and de-convolution efficiently. Compared to SCNN,

the proposed architecture offers 2.1× speed-up and 17%
SRAM reduction with 13% computational overhead.
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